Abstract
Chemically modified carbonaceous materials have attained utmost attention in the fields of renew-able energy storage and conversion, due to the controllable physicochemical properties, tailorable micro-/nanostructures, and respectable stability. Herein, P-doped mesoporous carbons were syn-thesized by using F127 as the soft template, organophosphonic acid as the P source and phenolic resin as the carbon source. Small amounts of iron species were introduced to act as a graphitization catalyst. The synthesized carbons exhibit the well-defined wormhole-like pore structure featuring high specific surface area and homogenously doped P heteroatoms. Notably, introducing iron spe-cies during the synthesis process can optimize the textural properties and the degree of graphitiza-tion of carbon materials. The doping amount of P has an important effect on the porous structure and the defect degree, which correspondingly influence the active sites and the oxygen reduction reaction (ORR) activity. The resultant material presents superior catalytic activity for the ORR, together with remarkably enhanced durability and methanol tolerance in comparison with the commercial Platinum catalyst, demonstrating the possibility for its use in electrode materials and electronic nanodevices for metal-air batteries and fuel cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.