Abstract

The earthquake responses of structures are usually analyzed under the assumption that the foundation is firmly bonded to the soil (fixed at their base). Such analyses often predict a base overturning moment that exceeds the available overturning resistance due to gravity loads, which implies that a portion of the foundation mat or some of the individual column footings, as the case may be, would intermittently uplift during the earthquake. In addition, p-delta phenomena are another valuable parameter that influence the response of structure with foundation uplift. Therefore it is a vital subject to investigate the influence of uplift on earthquake response of structures with including the p-delta effects. In the current paper, the investigation has been performed using finite element method with considering nonlinear material behavior. The computer program used already incorporates foundation uplift in a more realistic approach than structural models available in literature. The response of structures was compared in four cases: 1—with foundation uplift, 2—without foundation uplift, 3—with including the p-delta effects and 4—without including the p-delta effects. Some additional parametric studies have been conducted such as slender of structure, elastic modulus of soil and bi-directional input ground motion. These studies show the importance of uplift foundation on the seismic behavior of structures and the beneficial effects of foundation uplift in computing the earthquake response of structures are demonstrated. In addition, p-delta effects are the main reason to resonate the differences between the four cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.