Abstract
In this paper, we show how to reduce the Penrose conjecture to the known Riemannian Penrose inequality case whenever certain geometrically motivated systems of equations can be solved. Whether or not these special systems of equations have general existence theories is therefore an important open problem. The key tool in our method is the derivation of a new identity which we call the generalized Schoen-Yau identity, which is of independent interest. Using a generalized Jang equation, we use this identity to propose canonical embeddings of Cauchy data into corresponding static spacetimes. In addition, we discuss the Carrasco-Mars counterexample to the Penrose conjecture for generalized apparent horizons (added since the first version of this paper was posted on the arXiv) and instead conjecture the Penrose inequality for time-independent apparent horizons, which we define.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.