Abstract

Human aortic smooth muscle cells (SMC) specifically bind and take up indiscriminately both the lipid and protein moieties of homologous 25I-very low density lipoproteins (VLDL) and 125I-low density lipoproteins LDL). Sixty-five to 80% of absorbed lipids are incorporated into the cell lipids, preferentially into the phospholipid fraction. Twenty to 35% of the lipid bound and the protein moiety are eliminated from the cells. Half of the eliminated protein label is recovered as TCA soluble products. Five mM of p-chlorophenoxyisobutyrate (CPIB) raise the level of intracellular radioactivity derived from the lipid moieties of VLDL and LDL by about 40% via a reduced elimination. The processing of the protein moiety and lipoprotein binding to the cell surface are not affected by 5.0 mM of CPIB. CPIB lowers the incorporation of 14C-acetate, 14C-pyruvate, and 32phosphate radioactivity into fatty acids and phospholipids of aortic SMC. Five mM of CPIB reduce the overall palmitic acid synthesis by shifting from de novo synthesis to the mechanism of chain elongation, although the further elongation to saturated C18-C24 fatty acids is also depressed. The CPIB-enhanced retention of the lipid-derived lipoprotein radio-activity is interpreted as a compensatory mechanism providing cellular fatty acids which are deficient as a result of the CPIB inhibited synthetic processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call