Abstract

Rock physics experimental research on fractured media always uses synthetic samples with fractures, but most previous work has used samples of very different material and structure from natural rocks. This study has used a new construction method to build samples with controlled fractures, which have a more realistic mineral compensation and pore structure, similar to natural rocks. A set of samples with different fracture densities was built, and the P and S wave velocities were measured with 0.5 MHz transducers. The measured data were compared with Hudson model predicted results in order to calibrate the theoretical model. P and S wave anisotropies were compared and results demonstrate the accuracy of theoretical prediction of P and S wave velocities and anisotropies influenced by fracture density and fluids. Shear wave splitting shows a strong relationship to fracture density, and the SWS (%) is with around 100 times fracture density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.