Abstract

We have developed a P- and S-wave decomposition algorithm based on windowed Fourier transforms and a localized low-rank approximation with improved scalability and efficiency for anisotropic wavefields. The model and wavefield are divided into rectangular blocks that do not have to be geologically constrained; low-rank approximations and P- and S-decomposition are performed separately in each block. An overlap-add method reduces artifacts at block boundaries caused by Fourier transforms at wavefield truncations; limited communication is required between blocks. Localization allows a lower rank to be used than global low-rank approximations while maintaining the same quality of decomposition. The algorithm is scalable, making P- and S-decomposition possible in complicated 3D models. Tests with 2D and 3D synthetic data indicate good P- and S-decomposition results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.