Abstract

ABSTRACTWe studied microbe-plant interactions of white lupin, a cluster root-forming plant, under low P and N conditions to examine increased nutrient acquisition by plants either by a shift to a more specialized microbial community or changes in microbial enzyme production. White lupin plants were grown in rhizoboxes filled with either P- or N-deficient soil; fertilized soil was used as control. After cultivation of plants in a glasshouse for 41 d, plant growth (shoot and roots) and P and N accumulation in shoots were measured. Microbial functions were analyzed by P- and N-cycling enzymes. The microbial community structure was estimated by fingerprinting (denaturing gradient gel electrophoresis) and sequencing techniques. P deficiency induced the released citrate and acid phosphomonoesterases from cluster roots and stimulated the production of microbe-derived alkaline phosphomonoesterase in the rhizosphere. P deficiency decreased microbial diversity in the cluster root rhizosphere. Increased relative abundance of Burkholderiales in the rhizosphere of P deficient plants might be responsible for the degradation of different organic P fractions such as phytates. N deficiency induced an increase of the number of nodules and P concentration in shoot as well as roots of white lupin. We clarified that high release of citrate from cluster roots might be the preferred mechanisms to meet the P demand of nodulated plants under N deficiency. In addition, the high abundance of Rhizobiales and Rhodospirillales in the rhizosphere of cluster roots showed that the importance of N-fixing microorganisms under N deficiency. The contribution of rhizosphere microorganisms due to similar activities of N-cycling enzymes under the two different N treatments is less important for N nutrition of plants. Further understanding of the regulation of cluster roots under N-deficiency will provide new information on the interactions between P and N nutrition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.