Abstract

AbstractLet f be a primitive modular form of CM type of weight k and level Γ0(N). Let p be an odd prime which does not divide N, and for which f is ordinary. Our aim is to p-adically interpolate suitably normalized versions of the critical values L(f, ρχ,n), where n=1,2,. . .,k − 1, ρ is a fixed self-dual Artin representation of M∞ defined by (1.1) below, and χ runs over the irreducible Artin representations of the Galois group of the cyclotomic $\mathbb{Z}_p$-extension of $\mathbb{Q}$. As an application, if k ≥ 4, we will show that there are only finitely many χ such that L(f, ρχ,k/2)=0, generalizing a result of David Rohrlich. Also, we conditionally establish a congruence predicted by non-commutative Iwasawa theory and give numerical evidence for it.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.