Abstract

Drug addiction and reward learning both involve mechanisms in which reinforcing neuromodulators participate in changing synaptic strength. For example, dopamine receptor activation modulates corticostriatal plasticity through a mechanism involving the induction of the immediate early gene Homer 1a, the phosphorylation of metabotropic glutamate receptor 5 (mGluR5)′s Homer ligand, and the enhancement of an NMDA receptor-dependent current. Inspired by hypotheses that Homer 1a functions selectively in recently-active synapses, we propose that Homer 1a is recruited by a synaptic tag to functionally discriminate between synapses that predict reward and those that do not. The involvement of Homer 1a in this mechanism further suggests that decaminutes-old firing patterns can define which synapses encode new information.This article is part of a Special Issue entitled SI:Addiction circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.