Abstract

Introduction of Cre-recombinase in target cells is currently achieved by transfection of plasmid DNA or by viral-mediated transduction. However, efficiency of non-viral DNA transfection is often low in many cell types, and the use of viral vectors for transduction implies a more complex and laborious manipulation associated with safety issues. We have developed a non-viral non-DNA technique for rapid and highly efficient excision of LoxP-flanked DNA sequences based on electroporation of in vitro transcribed mRNA encoding Cre-recombinase. A K562-DSRed[EGFP] cell line was developed in order to measure Cre-mediated recombination by flow cytometric analysis. These cells have a stable integrated DSRed reporter gene flanked by two LoxP sites, and an EGFP reporter gene, which could only be transcribed when the coding sequence for DSRed was removed. The presented data show recombination efficiencies, as measured by appearance of EGFP-fluorescence, of up to 85% in Cre-recombinase mRNA-electroporated K562-DSRed[EGFP] cells. In conclusion, mRNA electroporation of Cre-recombinase is a powerful, safe, and clinically applicable alternative to current technologies used for excision of stably integrated LoxP-flanked DNA sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.