Abstract

A second indolizidine alkaloid, epimeric with castanospermine, has been isolated from seeds of the Australian tree Castanospermum australe. The structure was established as 6-epicastanospermine by proton and carbon-13 nuclear magnetic resonance spectroscopy and mass spectrometry. 6-Epicastanospermine was found to be a potent inhibitor of amyloglucosidase, (an exo-1,4,-α-glucosidase), a weak inhibitor of β-galactosidase, and not to inhibit β-glucosidase and α-mannosidase. These results indicate that glycosidase inhibitory activity cannot be predicted by comparison of the structure and stereochemistry with the appropriate sugars, since 6-epicastanospermine is an analog of mannose and not of glucose. The inhibition of amyloglucosidase was found to be competitive and to be more effective at higher pH values. Castanospermine and 6-epicastanospermine differed in their effect upon the mung bean processing enzymes, glucosidase I and II, in that the former is a potent inhibitor whereas the latter is a very poor inhibitor. Subtle alterations in stereochemistry of these alkaloids can therefore produce significant changes in their biological activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.