Abstract

In this study, an exergoeconomic analysis is performed on an integrated four-step thermochemical copper-chlorine cycle developed at the Ontario Tech. University through exergy, cost, energy, and mass (EXCEM) method. A thermodynamic model is first constructed in Aspen-plus (a process simulation software) to simulate and investigate the integrated cycle through exergy and energy analyses. The capital costs, thermodynamic loss rates, and the ratio of the thermodynamic loss rate to the capital cost of various system's components are also determined. Moreover, the average unit cost of hydrogen is evaluated and the influence of several system's parameters on the unit cost of hydrogen is analyzed. The results show that the cost of hydrogen is strongly dependent on the production capacity of the plant. Based on the analysis, our system generates hydrogen at an average unit cost of 5.54 $/kg with a plant capacity of 1619.3 kg/h considering both internal (operating and maintenance costs, etc.) and external (costs of various inputs, etc.) parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.