Abstract
Traditional studies on effects of outdoor pollution on asthma have been criticized for questionable statistical validity and inefficacy in exploring the effects of multiple air pollutants, alone and in combination. Association rule mining (ARM), a method easily interpretable and suitable for the analysis of the effects of multiple exposures, could be of use, but the traditional interest metrics of support and confidence need to be substituted with metrics that focus on risk variations caused by different exposures.We present an ARM-based methodology that produces rules associated with relevant odds ratios and limits the number of final rules even at very low support levels (0.5%), thanks to post-pruning criteria that limit rule redundancy and control for statistical significance. The methodology has been applied to a case-crossover study to explore the effects of multiple air pollutants on risk of asthma in pediatric subjects.We identified 27 rules with interesting odds ratio among more than 10,000 having the required support. The only rule including only one chemical is exposure to ozone on the previous day of the reported asthma attack (OR = 1.14). 26 combinatory rules highlight the limitations of air quality policies based on single pollutant thresholds and suggest that exposure to mixtures of chemicals is more harmful, with odds ratio as high as 1.54 (associated with the combination day0 SO2, day0 NO, day0 NO2, day1 PM).The proposed method can be used to analyze risk variations caused by single and multiple exposures. The method is reliable and requires fewer assumptions on the data than parametric approaches. Rules including more than one pollutant highlight interactions that deserve further investigation, while helping to limit the search field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.