Abstract
The medium spiny neurons (MSNs) of the nucleus accumbens function in a critical regard to examine and integrate information in the processing of rewarding behaviors. These neurons are aberrantly affected by drugs of abuse, including alcohol. However, ethanol is unlike any other common drug of abuse, due to its pleiotropic actions on intracellular and intercellular signaling processes. Intracellular biochemical pathways appear to critically contribute to long-term changes in the level of synaptic activation of these neurons, which have been implicated in ethanol dependence. Additionally, these neurons also display a fascinating pattern of up/down activity, which appears to be, at least in part, regulated by convergent activation of dopaminergic and glutamatergic (NMDA) inputs. Thus, dopaminergic and NMDA receptor-mediated synaptic transmission onto these neurons may constitute a critical site of ethanol action in mesolimbic structures. For instance, dopaminergic inputs alter the ability of ethanol to regulate NMDA receptor-mediated synaptic transmission onto accumbal MSNs. Prior activation of D1-signaling cascade through the cAMP-regulated phosphoprotein-32 kD (DARPP-32) and protein phosphatase-1 (PP-1) pathway significantly attenuates ethanol inhibition of NMDA receptor function. Therefore, the interaction of D1-signaling and NMDA receptor signaling may alter NMDA receptor-dependent long-term synaptic plasticity, contributing to the development of ethanol-induced neuroadaptation of the reward pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.