Abstract

Background: Embolization represents a minimally invasive treatment modality for arteriovenous malformations (AVMs), tumors, aneurysms, and vessel sacrifice, but can be limited by currently available embolization agents. Discovery of new and improved agents could lead to better treatment outcomes. The goal of this project was to develop and test a novel embolization agent using hydrogels, a class of materials which may be bioengineered to suit a variety of indications. Methods: We devised a method of liquid hydrogel embolization with photo-modulated crosslinking for intravascular solidification, using a custom microcatheter set-up. We tested this in swine blood vessels (n=3), the swine renal arterial trees as a vascular tumor model (n=5), and the swine arterial-arterial networks of the rete mirabile as an AVM model (n=3). Hydrogel embolization was assessed for treatment efficacy and safety. Follow-up angiography was performed at 2-4 week intervals. Results: Hydrogel embolization was technically successful in all animals, with full occlusion of the vascular target immediately following embolization and at follow-up. There were no instances of clinical or angiographic complications. Conclusions: We demonstrated a novel method of dynamic photomodulation and delivery of bioengineered hydrogels to address current limitations of endovascular embolization therapies. This promising technology will be investigated further with longer-term comparative animal trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.