Abstract

We present a cost-effective photonics-based THz wireless delivery system using a directly modulated distributed feedback laser diode (DFB-LD). A DFB-LD with non-return to zero (NRZ) modulation up to 25 Gbps and a uni-traveling-carrier photodiode (UTC-PD) with a horn antenna is employed to transmit a THz wave into free space in the photonics-based THz signal transmitter. A Schottky barrier diode (SBD) with a horn antenna is used to directly detect the THz wave from free space at the THz signal receiver. To achieve the best bit error rate performance, we varied the optimal THz carrier frequency in a photonics-based THz wireless delivery system. After THz carrier frequency optimization, bit error rates were measured by varying THz link operating conditions, such as the data rate, photocurrent of UTC-PD, and wireless transmission distance. We successfully transmitted a 25 Gb/s NRZ signal over 1.6 and 2.2 m wireless transmission distances before and after managing the adiabatic chirp characteristic of directly modulated DFB-LD using the laser-to-filter detuning effect, respectively, while satisfying the 7% hard decision-forward error correction (HD-FEC) threshold (3.4×10−3).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call