Abstract
Kangaroo rats develop spongiform degeneration of the central auditory system similar to that seen in the gerbil. Light microscopic and transmission electron microscopic study of the cochlear nucleus and auditory nerve root (ANR) of Dipodomys deserti and D. merriami show that spongiform lesions develop in dendrites and oligodendrocytes of the cochlear nucleus and in oligodendrocytes of the ANR that are morphologically indistinguishable from those extensively described in the Mongolian gerbil, Meriones unguiculatus. As in Mongolian gerbils, the spongiform degeneration in Dipodomys were much more numerous in animals continually exposed to modest levels of low-frequency noise ( < 75 dB SPL). The kangaroo rats with extensive spongiform degeneration also show slightly, but significantly, elevated auditory brainstem evoked response (ABR) thresholds to low-frequency stimuli, a result also found in Mongolian gerbils. These results suggest that the elevated ABR thresholds may be the result of spongiform degeneration. Because low-frequency noise-induced spongiform degeneration has now been shown in the cochlear nucleus of animals from separate families of Rodentia (Heteromyidae and Muridae), the possibility should be investigated that similar noise-induced degenerative changes occur in the central auditory system of other mammals with good low-frequency hearing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.