Abstract

The production of e-cigarette aerosols through vaping processes is known to cause the formation of various free radicals and reactive oxygen species (ROS). Despite the well-known oxidative potential and cytotoxicity of fresh vaping emissions, the effects of chemical aging on exhaled vaping aerosols by indoor atmospheric oxidants are yet to be elucidated. Terpenes are commonly found in e-liquids as flavor additives. In the presence of indoor ozone (O3), e-cigarette aerosols that contain terpene flavorings can undergo chemical transformations, further producing ROS and reactive carbonyl species. Here, we simulated the aging process of the e-cigarette emissions in a 2 m3 FEP film chamber with 100 ppbv of O3 exposure for an hour. The aged vaping aerosols, along with fresh aerosols, were collected to detect the presence of ROS. The aged particles exhibited 2- to 11-fold greater oxidative potential, and further analysis showed that these particles formed a greater number of radicals in aqueous conditions. The aging process induced the formation of various alkyl hydroperoxides (ROOH), and through iodometric quantification, we saw that our aged vaping particles contained significantly greater amounts of these hydroperoxides than their fresh counterparts. Bronchial epithelial cells exposed to aged vaping aerosols exhibited an upregulation of the oxidative stress genes, HMOX-1 and GSTP1, indicating the potential for inhalation toxicity. This work highlights the indirect danger of vaping in environments with high ground-level O3, which can chemically transform e-cigarette aerosols into new particles that can induce greater oxidative damage than fresh e-cigarette aerosols. Given that the toxicological characteristics of e-cigarettes are mainly associated with the inhalation of fresh aerosols in current studies, our work may provide a perspective that characterizes vaping exposure under secondhand or thirdhand conditions as a significant health risk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.