Abstract

Owing to its easy decomposition and residue-free properties, ozone has been used as an effective and environmentally friendly physical preservation method for maintaining the post-harvest quality of fruits. This study aimed to investigate the effects of ozone treatment on the levels of oxidative stress markers and the status of the antioxidant defense system in refrigerated kiwifruit. Additionally, the study aimed to identify the differences in gene expression levels and potential regulatory effects from the transcriptional level. The results showed that ozone treatment reduced the respiration rate, maintained the fruit hardness and storage quality, and inhibited the ripening and senescence of kiwifruit. Ozone treatment activated antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and ascorbate-glutathione cycle to prevent the increase of reactive oxygen species levels (H2O2, O2−•) and malonaldehyde content, maintaining lower membrane lipid peroxidation and reactive oxygen species (ROS) accumulation than the control treatment. Further analysis showed that the regulatory ability of ROS in kiwifruit treated with ozone was not only related to the synergistic effect of enzyme activity and gene expression related to the antioxidant oxidase system and the ascorbate-glutathione (ASA-GSH) cycle but also related to downstream hormone signaling. This study provides a foundation for understanding the potential effects of ozone treatment on the antioxidant cycle of kiwifruit and provides valuable insights into the molecular basis and related key genes involved in regulating ROS to delay aging in kiwifruit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call