Abstract

It is well established that in Europe, high O3 concentrations are most pronounced in southern/Mediterranean countries due to the more favourable climatological conditions for its formation. However, the contribution of the different sources of precursors to O3 formation within each country relative to the imported (regional and hemispheric) O3 is poorly quantified. This lack of quantitative knowledge prevents local authorities from effectively designing plans that reduce the exceedances of the O3 target value set by the European air quality directive. O3 source attribution is a challenge because the concentration at each location and time results not only from local biogenic and anthropogenic precursors, but also from the transport of O3 and precursors from neighbouring regions, O3 regional and hemispheric transport and stratospheric O3 injections. The main goal of this study is to provide a first quantitative estimation of the contribution of the main anthropogenic activity sectors to peak O3 events in Spain relative to the contribution of imported (regional and hemispheric) O3. We also assess the potential of our source apportionment method to improve O3 modelling. Our study applies and thoroughly evaluates a countrywide O3 source apportionment method implemented in the CALIOPE air quality forecast system for Spain at high resolution (4 × 4 km2) over a 10-day period characterized by typical summer conditions in the Iberian Peninsula (IP). The method tags both O3 and its gas precursor emissions from source sectors within one simulation, and each tagged species is subject to the typical physico-chemical processes (advection, vertical mixing, deposition, emission and chemistry) as the actual conditions remain unperturbed. We quantify the individual contributions of the largest NOx local sources to high O3 concentrations compared with the contribution of imported O3. We show, for the first time, that imported O3 is the largest input to the ground-level O3 concentration in the IP, accounting for 46 %–68 % of the daily mean O3 concentration during exceedances of the European target value. The hourly imported O3 increases during typical northwestern advections (70 %–90 %, 60–80 μg m−3), and decreases during typical stagnant conditions (30 %–40 %, 30–60 μg m−3) due to the local NO titration. During stagnant conditions, the local anthropogenic precursors control the O3 peaks in areas downwind of the main urban and industrial regions (up to 40 % in hourly peaks). We also show that ground-level O3 concentrations are strongly affected by vertical mixing of O3-rich layers present in the free troposphere, which result from local/regional layering and accumulation, and continental/hemispheric transport. Indeed, vertical mixing largely explains the presence of imported O3 at ground level in the IP. Our results demonstrate the need for detailed quantification of the local and remote contributions to high O3 concentrations for local O3 management, and show O3 source apportionment to be an essential analysis prior to the design of O3 mitigation plans in any non-attainment area. Achieving the European O3 objectives in southern Europe requires not only ad hoc local actions but also decided national and European-wide strategies.

Highlights

  • Tropospheric ozone (O3) is an air pollutant of major public concern as it harms human health (WHO, 2013) and sensitive vegetation (Booker et al, 2009), and contributes to climate change (Jacob and Winner, 2009)

  • Our study applies and thoroughly evaluates a countrywide O3 source apportionment method implemented in the CALIOPE air quality forecast system for Spain at high resolution (4 × 4 km2) over a 10-day period characterized by typical summer conditions in the Iberian Peninsula (IP)

  • The selected episode is not the most severe between 2000 and 2012 at a national scale, it comprises a period with high maximum daily 8 h averaged (MDA8) O3 concentrations measured at rural background stations, similar to the severe summer of 2003 (Solberg et al, 2008)

Read more

Summary

Introduction

Tropospheric ozone (O3) is an air pollutant of major public concern as it harms human health (WHO, 2013) and sensitive vegetation (Booker et al, 2009), and contributes to climate change (Jacob and Winner, 2009). Atmospheric circulation controls the short- and long-range transport of O3 affecting its lifetime in the atmosphere (Monks et al, 2015). The transport of precursors emitted in urban and industrialized areas may cause O3 production downwind (Holloway et al, 2003). According to the European Environmental Agency (EEA) around 95 %–98 % of the population in Europe were exposed to O3 concentrations that exceeded the guidelines of the World Health Organization (WHO) during 2013–2015 period (EEA, 2017). These guidelines establish a maximum daily 8 h averaged (MDA8) O3 concentration of 100 μg m−3 never to be exceeded. The European air quality directive (2008/50/EC) is less restrictive as it sets an O3 target value of 120 μg m−3 for the MDA8 concentration, which can be exceeded up to 25 days per calendar year averaged over 3 years

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call