Abstract

Depression has been associated with oxidative stress. There is increased awareness of the role of environmental toxins in the development of mood disorders. Ozone, a pro-oxidant and environmental pollutant, has been noted to have central nervous system effects. We investigated the effects of acute and chronic ozone inhalation on the response of imipramine in the forced-swim test (FST) and on biomarkers of oxidative stress in rat hippocampus. Sprague Dawley rats were exposed to 0, 0.25 or 0.7 ppm ozone per inhalation 4 h daily for either 30 days (chronic) or once (acute). Animals were then injected intraperitoneally with imipramine (10 mg/kg) or saline 24, 5 and 1 h before the forced-swim test. Hippocampal superoxide accumulation and lipid peroxidation were measured. Imipramine evoked an antidepressant-like effect independent of acute or chronic ozone exposure. However, 0.7 ppm acute ozone and 0.25 ppm chronic ozone attenuated the antidepressant-like effects of imipramine. The ozone exposures also elevated hippocampal superoxide accumulation and lipid peroxidation. Importantly, imipramine reversed the lipid peroxidation induced by chronic ozone, thereby preventing cellular damage induced by oxidative stress. Ozone exposure presents a feasible model with etiological validity to investigate oxidative stress in depression and antidepressant action.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.