Abstract

Ozone concentrations tend to be substantially lower indoors than outdoors, largely because of ozone reactions with indoor surfaces. When there are no indoor sources of ozone, a common condition, the net concentration of gaseous products derived from indoor ozone chemistry scales linearly with the difference between outdoor and indoor ozone concentrations, termed "ozone loss." As such, ozone loss is a metric that might be used by epidemiologists to disentangle the adverse health effects of ozone's oxidation products from those of exposure to ozone itself. The present paper examines the characteristics, potential utility, and limitations of the ozone loss concept. We show that for commonly occurring indoor conditions, the ozone loss concentration is directly proportional to the total rate constant for ozone removal on surfaces (ksum) and inversely proportional to the net removal of ozone by air exchange (λ) plus surface reactions (ksum). It follows that the ratio of indoor ozone to ozone loss is equal to the ratio of λ to ksum. Ozone loss is a promising metric for probing potential adverse health effects resulting from exposures to products of indoor ozone chemistry. Notwithstanding its virtues, practitioners using it should be mindful of the limitations discussed in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call