Abstract

The complex chain of photochemical reactions is one of the most important tasks in the air quality evaluation, expecially in urban areas. In fact, in this case there are high emission levels of NOx and no-methane hydrocarbons by combustion processes such as autovehicular traffic, domestic heating and industrial plants. Ozone is not emitted directly into the atmosphere but it is formed from a complex series of reactions between emitted nitrogen oxides (NOx) and reactive organic compounds (ROC). The high ozone concentrations, which occur during photochemical episodes, are usually accompanied by elevated concentrations of other photochemical oxidants such as nitric acid (HNO3), peroxyacylnitrates (PANs), hydrogen peroxide (H2O2), etc. The complex series of these reactions constitutes the most important issue to the degradation of air quality. Further, the NMHCs play a key role in the formation of photochemical air pollution: they are considered as precursors for ozone production at the ground level when the sunlight and nitrogen oxides are present. From a practically point of view defining a quality standard or a limit is substantially correct but it is no sufficient to solve the problem. So it should become necessary to acquire knowledge on the different formation mechanisms of the photochemical pollution phenomena. In this paper there will be shown the results of a long-term study performed in Rome for evaluating the ozone formation in relationship with the autovehicular traffic density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.