Abstract

Ozone exposure- and dose-response relationships based on photosynthetic leaf traits (CO2 assimilation, chlorophyll content, Rubisco and PEPc activities) were established for wheat, maize and poplar plants grown in identical controlled conditions, providing a comparison between crop and tree species, as well as between C3 and C4 plants. Intra-specific variability was addressed by comparing two wheat cultivars with contrasting ozone tolerance. Depending on plant models and ozone levels, first-order, second-order and segmented linear regression models were used to derive ozone response functions. Overall, flux-based functions appeared superior to exposure-based functions in describing the data, but the improvement remained modest. The best fit was obtained using the POD0.5 for maize and POD3 for poplar. The POD6 appeared relevant for wheat, although intervarietal differences were found. Our results suggest that taking into account the dynamics of leaf antioxidant capacity could improve current methods for ozone risk assessment for plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.