Abstract

Accurately forecasting ozone levels that exceed specific thresholds is pivotal for mitigating adverse effects on both the environment and public health. However, predicting such ozone exceedances remains challenging due to the infrequent occurrence of high-concentration ozone data. This research, leveraging data from 57 German monitoring stations from 1999 to 2018, introduces an Enhanced Extreme Instance Augmentation Random Forest (EEIA-RF) approach that significantly improves the prediction of days when the maximum daily 8-hour average ozone concentrations exceed 120μg/m3. A pre-trained machine learning model is used to generate additional high-concentration data, which, combined with selectively reduced low-concentration data, forms a new dataset for training a refined model. This method achieved an improvement of at least 8% in the accuracy of predicting days with ozone exceedances across Germany. Our experiment underscores the approach’s value in enhancing atmospheric modeling and supporting public health advisories and environmental policy-making related to ozone pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.