Abstract

The winter 1996/97 was quite unusual with late vortex formation and polar stratospheric cloud (PSC) development and subsequent record low temperatures in March. Ozone depletion in the Arctic vortex is determined using ozonesondes. The diabatic cooling is calculated with PV‐theta mapped ozone mixing ratios and the large ozone depletions, especially at the center of the vortex where most PSC existence was predicted, enhances the diabatic cooling by up to 80%. The average vortex chemical ozone depletion from January 6 to April 6 is 33, 46, 46, 43, 35, 33, 32 and 21 % in air masses ending at 375, 400, 425, 450, 475, 500, 525, and 550 K (about 14–22 km). This depletion is corrected for transport of ozone across the vortex edge calculated with reverse domain‐filling trajectories. 375 K is in fact below the vortex, but the calculation method is applicable at this level with small changes. The column integrated chemical ozone depletion amounts to about 92 DU (21%), which is comparable to the depletions observed during the previous four winters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.