Abstract
We use atmospheric ozone density profiles between 35 and 65 km altitude derived from SCIAMACHY limb measurements to quantify the ozone changes caused by the solar proton events from 26 October to 6 November 2003, known as the “Halloween storm.” Detailed maps and daily resolved time series up to 5 weeks after the first event are compared with the results from a chemistry, transport, and photolysis model of the middle atmosphere that includes NOx and HOx production due to energetic particle precipitation. The general features of the ozone loss are captured by the model fairly well. A strong ozone depletion of more than 50% even deep into the stratosphere is observed at high geomagnetic latitudes in the Northern Hemisphere, whereas the observed ozone depletion in the more sunlit Southern Hemisphere is much weaker. Reasons for these interhemispheric differences are given. Two regimes can be distinguished, one above about 50 km dominated by HOx (H, OH, HO2) driven ozone loss, one below about 50 km, dominated by NOx (NO, NO2) driven ozone loss. The regimes display a different temporal evolution of ozone depletion and recovery. We observe for the first time an establishment of two contemporaneous maxima of ozone depletion at different altitudes, which solely can be explained by these regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.