Abstract

An increase in skin cancer incidence due to an increase of solar ultraviolet (UV) radiation is one of the best quantitated effects of stratospheric ozone depletion. Until now, estimates of effective UV dosages could not be based on spectral data on carcinogenicity. Instead the spectral dependence of sunburn or mutations was used. These data contained little information on longwave ultraviolet radiation (UVA: 315-380 nm). Recently, in hairless mice, experimental data have become available on the carcinogenic effectiveness of the ultraviolet, including UVA. From these new data we can estimate the effect of ozone depletion on the ambient annual carcinogenic UV dose. We find that a 1% decrease in ozone yields a 1.56% increase in annual carcinogenic UV; this value is not strongly dependent on geographical latitude. From this result, combined with the dose-response relationship for UV carcinogenesis, we conclude that for a 1% decrease in total column atmospheric ozone an increase of 2.7% in non-melanoma skin cancer is to be expected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.