Abstract
A new atomic layer deposition (ALD) process for V2O5 using ozone (O3) as oxidant has been developed that resulted in crystalline V2O5 thin films which are single-phase and orthorhombic on various substrates (silicon, Au-coated stainless steel, and anodic aluminum oxide (AAO)) without any thermal post-treatment. Within a fairly narrow temperature window (170–185 °C), this low temperature process yields a growth rate of ∼0.27 A/cycle on Si. It presents good uniformity on planar substrates. Excellent conformality enables deposition into high aspect ratio (AR) nanopores (AR > 100), as needed for fabrication of three-dimensional (3D) nanostructures for next generation electrochemical energy storage devices. V2O5 films obtained using O3-based ALD showed superior electrochemical performance in lithium cells, with initial specific discharge capacity of 142 mAh/g in the potential range of 2.6–4.0 V, as well as excellent rate capability and cycling stability. These benefits are attributed primarily to the crystalli...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.