Abstract

This study was performed to investigate the variables that influence the efficiency of color removal from a solution containing an azo dye (C.I. Reactive Black 5, abbreviated here as RB5) by the combination of ozonation and electrocoagulation at iron electrodes. Several working parameters, such as initial pH, initial dye concentration, current density, salt (K 2SO 4) concentration, temperature, ozone flow rate and distance between the electrodes, were studied in an attempt to achieve higher color removal efficiency. The experimental results reveal that the color of RB5 in the aqueous phase was removed effectively. Under the conditions of an initial dye concentration of 100 mg/L, initial pH of 5.5, current density of 10 mA/cm 2, salt concentration of 5000 mg/L, temperature of 20 °C, ozone flow rate of 20 mL/min (ozone dose 0.20 g/h), and interelectrode distance of 1 cm, the color-removal efficiency reached 94%, corresponding to a reduction in COD of more than 60%. The energy consumption of the technique was approximately 33 kWh/kg of COD removal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.