Abstract

AbstractAs a result of their important role in weather and the global hydrological cycle, understanding atmospheric rivers' (ARs) connection to synoptic‐scale climate patterns and atmospheric dynamics has become increasingly important. In addition to case studies of two extreme AR events, we produce a December climatology of the three‐dimensional structure of water vapor and O3 (ozone) distributions associated with ARs in the northeastern Pacific from 2004 to 2014 using MERRA‐2 reanalysis products. Results show that positive O3 anomalies reside in dry intrusions of stratospheric air due to stratosphere‐to‐troposphere transport (STT) behind the intense water vapor transport of the AR. In composites, we find increased excesses of O3 concentration, as well as in the total O3 flux within the dry intrusions, with increased AR strength. We find that STT O3 flux associated with ARs over the NE Pacific accounts for up to 13% of total Northern Hemisphere STT O3 flux in December, and extrapolation indicates that AR‐associated dry intrusions may account for as much as 32% of total NH STT O3 flux. This study quantifies STT of O3 in connection with ARs for the first time and improves estimates of tropospheric ozone concentration due to STT in the identification of this correlation. In light of predictions that ARs will become more intense and/or frequent with climate change, quantifying AR‐related STT O3 flux is especially valuable for future radiative forcing calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.