Abstract

The GASCOD (Gas Analyzer Spectrometer Correlating Optical Differences) has been installed at the 'Mario Zucchelli' Antarctic station since 1996. It measures the zenith sky radiation in the 405-465 nm spectral range in unattended and automatic mode. The application to the spectral data of the DOAS (Differential Optical Absorption Spectroscopy) algorithms coupled with a Radiative Transfer Model (RTM) for the computation of the Air Mass Factor (AMF), allows for the retrieval of the total content of the main absorber in this spectral range, namely nitrogen dioxide (NO2). Moreover, the application of sophisticated inversion schemes to the output of the DOAS program, using the AMF matrix as the kernel of the inversion algorithm, permits the determination of the vertical distribution of the above mentioned compound. The full dataset of the spectral data obtained with GASCOD during the period 1996-2008, was re-analyzed with a modified version of the software tool previously utilized. Even if the spectral range examined with GASCOD is not the most favorable for the ozone total column and vertical profile retrieval, the re-processing of the spectral data allowed for the determination of the total ozone columns (TOC). The uncertainties range from 4% to 8% for ozone and 3% to 6% for NO2. The peculiar features of the seasonal variation of NO2 total columns (i.e. the normal decreasing during the austral fall and the irregular growing towards the summer month) are presented and discussed. The confirmations of the significant declining of the ozone total columns during the 'Ozone Hole' periods (mid-August to mid-October) are reported. The vertical distributions obtained for the preceding atmospheric compounds are shown and examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call