Abstract
BackgroundGout pain seriously affects the quality of patients' life. There is still no effective treatment. The inflammatory response is the main mechanism of gout. Here, we found that ozone can reduce the inflammatory reaction in the joints of gouty mice and relieve gout pain, and we further explore its protective mechanism.MethodsMSU was used to establish the gouty mice model. Nociception was assessed by Von Frey hairs. Cell signaling assays were performed by western blotting and immunohistochemistry. The mouse leukemia cells of monocyte macrophage line RAW264.7 were cultured to investigate the effects of ozone administration on macrophage.ResultsOzone reduced inflammation, relieved gout pain and improved the paw mean intensity and duty cycle of the gouty mice. Ozone increased the phosphorylation of AMP-activated protein kinase (AMPK), induced suppressor of cytokine signaling 3 (SOCS3) expression and inhibited metallopeptidase 9 (MMP9) expression. In vivo, ozone activated AMPK to induce Gas6 release, and upregulated MerTK/SOCS3 signaling pathway to reduce inflammation in mouse macrophage line RAW264.7. Inhibitors of AMPK and MerTK, respectively abolished the analgesic and anti-inflammatory effects of ozone in vivo and in vitro. Gas6 knockout cancelled the protectively effects of ozone on gout pain and the paw mean intensity and duty cycle of gouty mice. Additionally, the level of Gas6 and protein S in plasma of patients with hyperuricemia was significantly higher than that of healthy contrast group.ConclusionOzone reduces inflammation and alleviates gout pain by activating AMPK to up-regulate Gas6/MerTK/SOCS3 signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.