Abstract

AbstractGraphene oxide (GO) contains several chemical functional groups that are attached to the graphite basal plane and can be manipulated to tailor GO for specific applications. It is now revealed that the reaction of GO with ozone results in a high level of oxidation, which leads to significantly improved ionic (protonic) conductivity of the GO. Freestanding ozonated GO films were synthesized and used as efficient polymer electrolyte fuel cell membranes. The increase in protonic conductivity of the ozonated GO originates from enhanced proton hopping, which is due to the higher content of oxygenated functional groups in the basal planes and edges of ozonated GO as well as the morphology changes in GO that are caused by ozonation. The results of this study demonstrate that the modification of dispersed GO presents a powerful opportunity for optimizing a nanoscale material for proton‐exchange membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call