Abstract

The most popular group of alternative fuels is that derived from renewable sources. This group of fuels includes: vegetable oils and their derivatives (for example, esters of higher carboxylic acids) alcohols (for example, ethanol and methanol) ethers (for example, methyl tert-butyl ether, ethyl tert-butyl ether) liquid biomass processing products ( synthetic fuel). Among this group, the most interesting are alcohols, especially ethanol. This is due to the fact that ethanol has better physicochemical properties than methanol. It can be produced from renewable sources and the manufacturing process is not complicated. Drinking alcohol also reduces emissions of carbon dioxide (CO2) and toxic compounds such as particulate matter and nitrogen oxides (NOx) from diesel engines. By using alternative fuels, costly engine design changes can be avoided and only regulatory changes can be made. The miscibility of ethanol with diesel is influenced by water content and temperature. At a temperature of about 10 ° C, the mixture stratifies. One additive that can be used as a stabilizer for an ethanol-diesel mixture is dodecanol (C12H26). It is obtained by reduction of methyl esters. Dodecanol is solid at a temperature of 24 ° C, insoluble in water and mixes well with diesel fuel and ethyl alcohol. In order for this type of fuel to be used to power diesel engines, it is necessary to know their physicochemical properties, since they have a significant impact on the correct operation of the internal combustion engine, operational parameters and the purity of exhaust gases into the environment. The addition of ethanol to diesel fuel affects key properties such as kinematic viscosity and density. Viscosity affects the atomization and atomization characteristics of the combustion chamber. According to Soter, a lower viscosity value leads to smaller droplet diameters, thus increasing the surface area of the droplets significantly affects the evaporation time of the droplets. Taking into account the processes occurring in the injection systems, the choice of fuel with the optimal viscosity should be a compromise option. On the one hand, the increase in viscosity is favorable due to the efficiency and pressure in the high-pressure pumps and the lubrication conditions of the moving interacting elements of the injection system, but on the other hand, it leads to an increase in energy for pumping fuel into the supply system. On the other hand, an increase in density leads to an increase in particulate emissions. Low density is associated with lower heating value. This will affect the degradation of power and torque. In such a case, in order to reduce the difference, the fuel dose should be increased, the fuel consumption will be increased and the beneficial effect of low fuel density on the reduction of particulate matter emissions will be eliminated. The article presents the results of the study of the issue substantiated the need to measure the kinematic viscosity and density of mixtures of diesel fuel with ethanol and dodecanol. The results of the viscosity measurements can be used to determine the injection parameters and the macrostructure of the atomized fuel flow. KEY WORDS: DIESEL FUEL, ALTERNATIVE FUEL, ETHYL ALCOHOL, DODECANOL, KINETIC VISCOSITY

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.