Abstract

Oyster extracts have been reported to have many bioactive peptides. But the function of oyster peptides produced by proteolysis is still unknown. In this study, the oligopeptide-enriched hydrolysates from oyster (Crassostrea gigas) were produced using the protease from Bacillus sp. SM98011 at laboratory level, and scaled up to pilot (100 L) and plant (1,000 L) levels with the same conditions. And the antitumor activity and immunostimulating effects of the oyster hydrolysates in BALB/c mice were investigated. The growth of transplantable sarcoma-S180 was obviously inhibited in a dose-dependent manner in BALB/c mice given the oyster hydrolysates. Mice receiving 0.25, 0.5 and 1 mg/g of body weight by oral gavage had 6.8%, 30.6% and 48% less tumor growth, respectively. Concurrently, the weight coefficients of the thymus and the spleen, the activity of natural killer (NK) cells, the spleen proliferation of lymphocytes and the phagocytic rate of macrophages in S180-bearing mice significantly increased after administration of the oyster hydrolysates. These results demonstrated that oyster hydrolysates produced strong immunostimulating effects in mice, which might result in its antitumor activity. The antitumor and immunostimulating effects of oyster hydrolysates prepared in this study reveal its potential for tumor therapy and as a dietary supplement with immunostimulatory activity.

Highlights

  • Enzymatic hydrolysis is an attractive method for modifying the physical properties of food proteins to improve their nutritional properties [1]

  • The antitumor activity and immunostimulating effects of the oyster hydrolysates produced at plant scale in BALB/c mice were investigated

  • The growth of transplantable sarcoma-S180 was obviously inhibited in a dose-dependent manner in BALB/c mice given the oyster hydrolysates

Read more

Summary

Introduction

Enzymatic hydrolysis is an attractive method for modifying the physical properties of food proteins to improve their nutritional properties [1]. The application of enzyme technology to recover modified food proteins may produce a broad spectrum of food ingredients or industrial products [2,3,4]. Recent studies have demonstrated the capacity of enzymes to produce novel food products, modify foodstuffs and improve waste management [1,5,6,7]. Immune peptides are a group of extremely diverse small proteins that are suitable as biocontrol agents because they: (i) have a broad spectrum of target microorganisms, including bacteria, fungi and viruses; (ii) have not, to date, induced pathogen resistance; (iii) are generally non-toxic, and can meet food safety requirements. Marine proteins may be an important resource for novel immune peptides following enzymatic hydrolysis

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.