Abstract
To investigate the relationship between the oxytocin (OT) receptor (OTR) quantity and the contractile features systematically, we measured the mRNA expression levels of OTR and L-type Ca(2+) channel alpha(1C)-subunit (alpha(1C)) and examined the regulatory mechanisms of OT-induced phasic or tonic contractions of the longitudinal smooth muscles in mouse uteri. The mRNA expression of OTR in 19.0 G (19.0 days of gestation) was greater than those in nonpregnant phases, and that of alpha(1C) in estrus and 19.0 G was higher than in diestrus. OT-induced contractions sparsely occurred in diestrus. The OT-induced all-or-none-type phasic contractions at low concentrations were abolished by verapamil in both estrus and 19.0 G. OT-induced tonic contractions had similar pD(2) values in both estrus and 19.0 G. However, the magnitude in 19.0 G was much greater than that in estrus. The large tonic contractions also occurred in PGF(2alpha) receptor (FP) knockout mice in 19.0 G despite a small amount of OTR. Verapamil and Y-27632 partially inhibited the tonic contractions in 19.0 G. Cyclopiazonic acid-induced tonic contractions were reciprocally decreased with the increase in the OT-induced ones in 19.0 G. These results indicate that the phasic contractions are dependent on alpha(1C). The tonic contractions in 19.0 G are dependent on both Ca(2+) influxes via L-type Ca(2+) channels and store-operated Ca(2+) channels, and the force is augmented by the Rho signal pathway, which increases the Ca(2+) sensitivity. Thus the uterine contractions are mainly controlled by the modification of contractile signal machinery rather than simply by the OTR quantity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Endocrinology and Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.