Abstract
Oxytocin (OXT) is a neurohypophysial nonapeptide that exerts its effects mainly through the oxytocin receptor (OXTR). Several studies have pointed out the role of OXT in the modulation of stem cell (SC) fate and properties. SCs are undifferentiated cells characterized by a remarkable ability to self-renew and differentiate into various cell types of the body. In this review, we focused on the role of OXT in SC differentiation. Specifically, we summarize and discuss the scientific research examining the effects of OXT on mesodermal SC-derived lineages, including cardiac, myogenic, adipogenic, osteogenic, and chondrogenic differentiation. The available studies related to the effects of OXT on SC differentiation provide little insights about the molecular mechanism mediated by the OXT-OXTR pathway. Further research is needed to fully elucidate these pathways to effectively modulate SC differentiation and develop potential therapeutic applications in regenerative medicine.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.