Abstract
Oxytocin (OT) is a hypothalamic nonapeptide that mediates a host of physiological and behavioral processes including reproductive physiology and social attachments. While the OT sequence structure is highly conserved among mammals, New World monkeys (NWMs) represent an unusual "hot spot" in OT structure variability among mammals. At least 6 distinct OT ligand variants among NWMs exist, yet it is currently unclear whether these evolved structural changes result in meaningful functional consequences. NWMs offer a new area to explore how these modifications to OT and its canonical G-protein coupled OT receptor (OTR) may mediate specific cellular, physiological and behavioral outcomes. In this review, we highlight relationships between OT ligand and OTR structural variability, specifically examining coevolution between OT ligands, OTRs, and physiological and behavioral phenotypes across NWMs. We consider whether these evolved modifications to the OT structure alter pharmacological profiles at human and marmoset OTRs, including changes to receptor binding, intracellular signaling and receptor internalization. Finally, we evaluate whether exogenous manipulation using OT variants in marmoset monkeys differentially enhance or impair behavioral processes involved in social relationships between pairmates, opposite-sex strangers, and parents and their offspring. Overall, it appears that changes to OT ligands in NWMs result in important changes ranging from cellular signaling to broad measures of social behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.