Abstract

BackgroundMigraine is among the most prevalent and burdensome neurological disorders in the United States based on disability-adjusted life years. Cortical spreading depolarization (SD) is the most likely electrophysiological cause of migraine aura and may be linked to trigeminal nociception. We previously demonstrated, using a minimally invasive optogenetic approach of SD induction (opto-SD), that opto-SD triggers acute periorbital mechanical allodynia that is reversed by 5HT1B/1D receptor agonists, supporting SD-induced activation of migraine-relevant trigeminal pain pathways in mice. Recent data highlight hypothalamic neural circuits in migraine, and SD may activate hypothalamic neurons. Furthermore, neuroanatomical, electrophysiological, and behavioral data suggest a homeostatic analgesic function of hypothalamic neuropeptide hormone, oxytocin. We, therefore, examined the role of hypothalamic paraventricular nucleus (PVN) and oxytocinergic (OXT) signaling in opto-SD-induced trigeminal pain behavior.MethodsWe induced a single opto-SD in adult male and female Thy1-ChR2-YFP transgenic mice and quantified fos immunolabeling in the PVN and supraoptic nucleus (SON) compared with sham controls. Oxytocin expression was also measured in fos-positive neurons in the PVN. Periorbital mechanical allodynia was tested after treatment with selective OXT receptor antagonist L-368,899 (5 to 25 mg/kg i.p.) or vehicle at 1, 2, and 4 h after opto-SD or sham stimulation using von Frey monofilaments.ResultsOpto-SD significantly increased the number of fos immunoreactive cells in the PVN and SON as compared to sham stimulation (p < 0.001, p = 0.018, respectively). A subpopulation of fos-positive neurons also stained positive for oxytocin. Opto-SD evoked periorbital mechanical allodynia 1 h after SD (p = 0.001 vs. sham), which recovered quickly within 2 h (p = 0.638). OXT receptor antagonist L-368,899 dose-dependently prolonged SD-induced periorbital allodynia (p < 0.001). L-368,899 did not affect mechanical thresholds in the absence of opto-SD.ConclusionsThese data support an SD-induced activation of PVN neurons and a role for endogenous OXT in alleviating acute SD-induced trigeminal allodynia by shortening its duration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.