Abstract

The attachment of monocytes to human brain microvascular endothelial cells (HBMVEs) caused by oxidized low-density lipoprotein (ox-LDL) is associated with an early event and the pathological progression of cerebrovascular diseases. Oxytocin (OT) is a human peptide hormone that is traditionally used as a medication to facilitate childbirth. However, little information is available regarding the physiological function of OT in brain endothelial dysfunction. In the present study, our results indicate that the oxytocin receptor (OTR) was expressed in human brain microvascular endothelial cells (HBMVEs) and was upregulated in response to ox-LDL in a concentration-dependent manner. Notably, OT significantly suppressed ox-LDL-induced attachment of THP-1 monocytes to HBMVEs. Furthermore, we found that OT reduced the expression of adhesion molecules, such as VCAM-1 and E-selectin. Interestingly, it was shown that OT could restore ox-LDL-induced reduction of KLF4 in HBMVEs. Importantly, knockdown of KLF4 abolished the inhibitory effects of OT on ox-LDL-induced expressions of VCAM-1 and E-selectin as well as the adhesion of human monocytic THP-1 cells to endothelial HBMVEs. Mechanistically, we found that the stimulatory effects of OT on KLF4 expression are mediated by the MEK5/MEF2A pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.