Abstract

At the end of pregnancy, the uterus transitions from a quiescent state to a highly contractile state. This transition requires that the uterine (myometrial) smooth muscle cells increase their excitability, although how this occurs is not fully understood. We identified SLO2.1, a potassium channel previously unknown in uterine smooth muscle, as a potential significant contributor to the electrical excitability of myometrial smooth muscle cells. We found that activity of the SLO2.1 channel is negatively regulated by oxytocin via Gαq-protein-coupled receptor activation of protein kinase C. This results in depolarization of the uterine smooth muscle cells and calcium entry, which may contribute to uterine contraction. These findings provide novel insights into a previously unknown mechanism by which oxytocin may act to modulate myometrial smooth muscle cell excitability. Our findings also reveal a new potential pharmacological target for modulating uterine excitability. During pregnancy, the uterus transitions from a quiescent state to a more excitable contractile state. This is considered to be at least partly a result of changes in the myometrial smooth muscle cell (MSMC) resting membrane potential. However, the ion channels controlling the myometrial resting membrane potential and the mechanism of transition to a more excitable state have not been fully clarified. In the present study, we show that the sodium-activated, high-conductance, potassium leak channel, SLO2.1, is expressed and active at the resting membrane potential in MSMCs. Additionally, we report that SLO2.1 is inhibited by oxytocin binding to the oxytocin receptor. Inhibition of SLO2.1 leads to membrane depolarization and activation of voltage-dependent calcium channels, resulting in calcium influx. The results of the present study reveal that oxytocin may modulate MSMC electrical activity by inhibiting SLO2.1 potassium channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.