Abstract

Prepulse inhibition (PPI) of the startle response is a measure of sensorimotor gating that is impaired in many clinical conditions, including schizophrenia. The inbred Roman high-avoidance (RHA) rats, compared to their low-avoidance (RLA) counterparts, show distinct schizophrenia-like phenotypes, such as spontaneous deficits in PPI accompanied by decreased medial prefrontal cortex (mPFC) activity and volume. Schizophrenia-like deficits are usually attenuated by antipsychotic drugs, but these drugs often produce severe side effects. In order to reduce these side effects, the neuropeptide oxytocin has been proposed as an alternative natural antipsychotic for schizophrenia. Here, we examined the effects of peripheral oxytocin administration (saline, 0.04, and 0.2 mg/kg) on PPI in the RHA vs. RLA rats, as well as in the outbred heterogeneous stock (HS) rats. Our results showed that oxytocin increased PPI in the HS rats and attenuated PPI deficits in the RHA rats, but it did not significantly affect PPI in the RLAs. To explore whether these divergent effects were associated with differences in oxytocinergic mechanisms, we analyzed gene expression of the oxytocin receptor (OXTR) and the regulator of oxytocin release (CD38) in the mPFC of the Roman rats. Consistent with the differential oxytocin effects on PPI (RHA > RLA), constitutive CD38 expression was reduced in the RHA rats compared to the RLAs, while oxytocin administration increased OXTR expression in both strains. Overall, the present work reveals that oxytocin administration shows antipsychotic-like effects on PPI in outbred and inbred rats, and it suggests that these effects may be related to basal differences in oxytocin-mediated mechanisms in the mPFC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call