Abstract

We conducted this study to determine what receptor mediates the effect of oxytocin to increase osmotic water permeability (Pf) in the rat inner medullary collecting duct (IMCD). Reverse transcription-polymerase chain reaction (RT-PCR) experiments demonstrated that mRNA for both the oxytocin receptor and the V2 receptor is present in the rat terminal IMCD. In isolated perfused IMCD segments, we found that the V2 vasopressin receptor antagonist [d(CH2)5(1),D-Ile2,Ile4,Arg8]vasopressin, but not oxytocin receptor antagonists, blocked the hydrosmotic response to 200 pM oxytocin. The selective oxytocin receptor agonist [Thr4,Gly7]oxytocin did not increase water permeability. Oxytocin also increased urea permeability in IMCD segments. Studies in IMCD suspensions showed that oxytocin increases adenosine 3',5'-cyclic monophosphate production in a dose-dependent fashion with a half-maximal (EC50) response at 5.2 nM. The dose-response curves were virtually identical for IMCD suspensions from Sprague-Dawley rats and Brattleboro rats. The oxytocin dose-response curve was displaced to the right of the vasopressin dose-response curve (EC50, 0.44 nM). From these results, we conclude that the V2 receptor mediates the hydrosmotic action of oxytocin in rat IMCD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.