Abstract

Oxytocin and vasopressin are pituitary neuropeptides that have been shown to affect social processes in mammals. There is growing interest in these molecules and their receptors as potential precipitants of, and/or treatments for, social deficits in neurodevelopmental disorders, including autism spectrum disorder. Numerous behavioral-genetic studies suggest that there is an association between these peptides and individual social abilities; however, an explanatory model that links hormonal activity at the receptor level to complex human behavior remains elusive. The following review summarizes the known associations between the oxytocin and vasopressin neuropeptide systems and social neurocircuits in the brain. Following a micro- to macro- level trajectory, current literature on the synthesis and secretion of these peptides, and the structure, function and distribution of their respective receptors is first surveyed. Next, current models regarding the mechanism of action of these peptides on microcircuitry and other neurotransmitter systems are discussed. Functional neuroimaging evidence on the acute effects of exogenous administration of these peptides on brain activity is then reviewed. Overall, a model in which the local neuromodulatory effects of pituitary neuropeptides on brainstem and basal forebrain regions strengthen signaling within social neurocircuits proves appealing. However, these findings are derived from animal models; more research is needed to clarify the relevance of these mechanisms to human behavior and treatment of social deficits in neuropsychiatric disorders.

Highlights

  • Oxytocin and arginine vasopressin (AVP) are neuropeptides synthesized in the hypothalamus and secreted from the posterior pituitary gland

  • Functional neuroimaging literature following acute administration of oxytocin and vasopressin support their potential role in social information processing as evidence by neural activation in regions implicated in social brain networks

  • Some studies have detected differential activation patterns in the basal forebrain and brainstem. (2) Many investigators have shown changes in functional connectivity between various structures in the above listed regions in response to peptide administration. (3) A small number of studies including participants with ASD suggest that aberrant functional activation patterns in response to social stimuli may be partially corrected following acute treatment with oxytocin

Read more

Summary

Introduction

Oxytocin and arginine vasopressin (AVP) are neuropeptides synthesized in the hypothalamus and secreted from the posterior pituitary gland. Oxytocin was first described for its important role in stimulating uterine contractions and milk let down after birth, while AVP is central to water homeostasis by regulating urine concentration at the level of the kidney. In addition to these physiologic functions, both peptides are understood to mediate numerous social behaviors in mammals. The role of the oxytocin and vasopressin systems in social functioning has developed out of a large body of animal research, focusing primarily on rodents.

Objectives
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.