Abstract
Oxytocin (OXT) is a neuropeptide hormone synthesized and secreted by hypothalamic neurons and has been reported to play a significant role in pain modulation. However, the mechanisms underlying OXT's antinociceptive effect on neuropathic pain are not fully understood. In this study, we examined the peripheral effect of OXT on mechanical hypersensitivity induced by partial ligation of the infraorbital nerve (PNL) in rats. Mechanical hypersensitivity in the whisker pad skin after PNL was attenuated by the direct administration of OXT into the trigeminal ganglion (TG). The proportion of vasopressin-1A receptor (V1A-R)-immunoreactive, but not OXT-receptor-immunoreactive, neurons significantly increased among TG neurons innervating the whisker pad skin after PNL. In a patch-clamp recording from TG neurons isolated from PNL rats, the resting membrane potential of OXT-treated neurons was significantly decreased, and the current thresholds of OXT-treated neurons for spike generation (rheobases) were significantly greater than those of vehicle-treated neurons. In addition, OXT increased voltage-gated K channel currents in PNL animals. Furthermore, intra-TG administration of a selective V1A-R antagonist reversed the OXT-induced alleviation of mechanical hypersensitivity, and coapplication of the antagonist opposed OXT's effects on the resting membrane potential, rheobase, and K current. These findings suggest that OXT is effective at suppressing TG neuronal hyperexcitability after nerve injury, likely by modulation of voltage-gated K channels through V1A-R. This signaling mechanism represents a potential therapeutic target for the treatment of orofacial neuropathic pain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.