Abstract

Poly-ortho-aminophenol (PoAP) and multi-walled carbon nanotubes (MWCNTs) were deposited on the platinum electrode using cyclic voltammetry technique to form the Pt/PoAP/MWCNTs nanosensor for the electrochemical determination of oxytetracycline as analyte. This electrochemical nanosensor with good uniformity and high surface area was prepared in the presence of an ionic surfactant (sodium dodecyl sulfate) as electrolyte to suspend carbon nanotubes within the PoAP and improve the stability and electroactivity of the composite film. The surface morphology of the prepared nanosensor was characterized by scanning electron microscopy and showed a three-dimensional network structure. The influence of several parameters such as number of potential cycles, scan rate and pH of the solution on the electrochemical response of the resultant electrode was investigated. The prepared electrode functioned as a selective recognition element for oxytetracycline determination. It showed excellent electrochemical response to oxytetracycline at low oxidative potential in buffer solution of pH 2.0, with good stability and sensitivity. Under the optimal experimental conditions, the electrochemical response of the sensor was linear with respect to the concentration of oxytetracycline in a dynamic range of 0.2 μM–0.25 mM. The detection limit of the fabricated nanosensor was calculated as 0.10 μM (signal/noise = 3). This sensor was used successfully for the oxytetracycline determination in real samples with recoveries of 96.9–103.5 %.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call