Abstract
This paper addresses the experimental investigation of coal combustion characteristics (ignition, burnout and NO formation) under oxy-steam combustion conditions. Two coals are selected in order to compare the effect of the rank: bituminous and sub-bituminous ones. The experiments have been conducted in an electrically-heated entrained flow reactor for a set of O2/N2, O2/CO2 and O2/H2O/CO2 atmospheres, with O2 concentrations up to 35% and H2O concentrations up to 40%. Regarding ignition, 10% H2O reduces ignition temperature (max. 16–19 K) but the trend is reversed when supplying additional steam to 25% and 40%. This behaviour is similar for both coals, with slight larger variations in the case of the low rank coal. Burnout degree of the sub-bituminous coal is barely affected by the steam concentration since all observed conversions are very high. Larger increments (up to 6.1 percentage points) are obtained for the bituminous coal, with a maximum burnout degree for the 25/35% H2O/O2 atmosphere. A very different effect of steam on NO formation is found depending on the coal rank. Significant reduction rates are observed for the bituminous coal in comparison to the dry O2/CO2 atmospheres, with a maximum diminution of 24% when 40% H2O replaces CO2. On the contrary, the higher volatile content in the sub-bituminous coal leads to NO increments up to 9%. For all the combustion characteristics studied, the increase of O2 concentrations attenuates the effects caused by the steam addition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.