Abstract
Inflammatory diseases often result in bone loss due to persistent inflammation, which activates osteoclasts and increases bone resorption. Oxysophocarpine (OSC), a bioalkaloid extracted from the roots of Sophora japonica and other leguminous plants, has neuroprotective and anti-tumor properties. However, it is still uncertain whether OSC can effectively inhibit the differentiation of osteoclasts and bone resorption. Therefore, this study explored the potential role of OSC in osteoclast formation and inflammatory osteolysis and its underlying mechanisms. This study involved inducing primary mouse bone marrow macrophages (BMMs) into osteoclasts using macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) and examined the effects of OSC on osteoclast (OC) differentiation, function, and intracellular reactive oxygen species (ROS) production. The impact of OSC on the expression of osteoclast-specific genes and inflammation-related factors was assessed using real-time quantitative PCR. Additionally, changes in oxidative stress-related factors, NF-κB, and MAPK signaling pathways were examined using western blotting. Finally, this study investigated the influence of OSC on a mouse cranial bone resorption model induced by titanium (Ti) particles in vivo. OSC inhibited OC differentiation and resorption and reduces intracellular ROS levels. Moreover, OSC suppressed IL-1β, TNF-α, IL-6, and osteoclast-specific gene transcription while increasing Nrf2 and HO-1 protein expression. Furthermore, OSC inhibited the expression and autoregulation of the NFATc1 gene, ultimately leading to a reduction in Ti particle-induced bone resorption in mice. OSC could be regarded as an innovative medication for the treatment of osteoclast-associated inflammatory osteolytic diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.