Abstract

Upcycling of carbon dioxide towards fuels and value-added chemicals poses an opportunity to overcome challenges faced by depleting fossil fuels and climate change. Herein, combining highly controllable molecular beam epitaxy growth of gallium nitride (GaN) under a nitrogen-rich atmosphere with subsequent air annealing, a tunable platform of gallium oxynitride (GaN1-xOx) nanowires is built to anchor rhodium (Rh) nanoparticles for carbon dioxide hydrogenation. By correlatively employing various spectroscopic and microscopic characterizations, as well as density functional theory calculations, it is revealed that the engineered oxynitride surface of GaN works in synergy with Rh to achieve a dramatically reduced energy barrier. Meanwhile, the potential-determining step is switched from *COOH formation into *CO desorption. As a result, significantly improved CO activity of 127 mmol‧gcat−1‧h−1 is achieved with high selectivity of >94% at 290 °C under atmospheric pressure, which is three orders of magnitude higher than that of commercial Rh/Al2O3. Furthermore, capitalizing on the high dispersion of the Rh species, the architecture illustrates a decent turnover frequency of 270 mol CO per mol Rh per hour over 9 cycles of operation. This work presents a viable strategy for promoting CO2 refining via surface engineering of an advanced support, in collaboration with a suitable metal cocatalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.